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Introduction

A measure of dependence is an important concept that has recently received con-
siderable attention in the area of machine learning due to its potential application
in many practical problems such as regression, clustering, feature selection, indepen-
dent component analysis, etc. Given random variable pair (X, Y ), a possible measure
of dependence δ(X,Y ) is the divergence between the joint density h(x, y) and the
product of the marginal densities f(x) and g(y) i.e.

δ(X, Y ) =
∫

φ

(
h(x, y)

f(x)g(y)

)
f(x)g(y)dxdy = EXEY φ

(
h(X, Y )

f(X)g(Y )

)

where φ is a convex function. Therefore, dependence between two random variables
can be estimated by estimating the ratio

l(x, y) =
h(x, y)

f(x)g(y)
.

Estimation of density ratio

•Let U and V be two random variables with densities p(u) and q(v), respectively.
The objective is to estimate the density ratio

l(u) =
q(u)

p(u)

from realizations {ui}n
i=1 and {vi}n

i=1.

•Assume that l(u) ∈ H where H is the reproducing kernel Hilbert space defined on
U and U takes value in U i.e., to be specific, assume the model

l̂(u) =
n∑

i=1

αiκ(u, ui)

where κ is the reproducing kernel of H.

•Minimize the regularized cost,

J =
∫ (

l(u) − l̂(u)
)2

p(u)du + λ||l̂||2H
•Expanding the cost function, we get,

J =
∫ (

l(u) − l̂(u)
)2

p(u)du + λ||l̂||2H
=C − 2

∫
l̂(u)q(u)du +

∫
l̂2(u)p(u) + λ||l̂||2H

=C − 2 E

n∑
i=1

αiκ(V, ui) + E

n∑
i=1

n∑
j=1

αiαjκ(U, ui)κ(U, uj) + λ
n∑

i=1

n∑
j=1

αiαjκ(ui, uj)

≈C − 2

n

n∑
j=1

n∑
i=1

αiκ(vj, ui) +
1

n

n∑
k=1

n∑
i=1

n∑
j=1

αiαjκ(uk, ui)κ(uk, uj)

+ λ
n∑

i=1

n∑
j=1

αiαjκ(ui, uj)

=C − 2

n
α�KUV 1 +

1

n
α�(KUU + nλI)KUUα

where C =
∫

l2(u)p(u)du < ∞ does not depend on α, 1 is a vector of ones and

[KAB]ij = κ(ai, bj).
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Figure 1: Graphical representation of the cost for density ratio estimation

•Differentiating with respect to α and equating to zero, we get,

(KUU + nλI)KUUα∗ = KUV 1.

•Therefore, the values of l̂(u) at points {ui}n
i=1 are given by

l̂ = KUUα∗ = (KUU + nλI)−1KUV

where l̂ = [l̂(u1), . . . , l̂(un)]
�.

Estimation of Dependence

• In order to estimate dependence, we need to estimate the ratio l(x, y). However,
the extension of the proposed method to this problem is not straightforward since,
the model l̂(x, y) (l̂(u) in previous section) requires samples from the denominator
density f(x)g(y) (i.e. p(u) in the previous section) whereas, in practice, we only
have samples from the numerator density h(x, y) (i.e. q(u) in previous section).
To resolve this issue we propose to estimate the ratio

l̃(x, y) =
f(x)g(y)

h(x, y)

instead. Note that this ratio can be undefined but we are only interested in the
region where it is defined. For example, we use this fact in defining the cost func-
tion.

• In a similar fashion, given samples {(xi, yi)}n
i=1, assume the model l̂(x, y) =∑n

i=1 αiκ1(x, xi)κ2(y, yi) and minimize the regularized cost

J =
∫ (

l̂(x, y) − ˆ̃l(x, y)
)2

h(x, y)dxdy + λ||ˆ̃l(x, y)||2H
•Using similar derivation, we get,

n(KXX ◦ KY Y + nλI)(KXX ◦ KY Y )α∗ = KXX1 ◦ KY Y 1

where ◦ denotes the entrywise product.

•Using the estimated density ratio we estimate the dependence, in particular, the
mutual information (φ(t) = t log t), as follows,

MI(X, Y ) = − E log(l̃(X, Y )) ≈ −1

n

n∑
j=1

log ˆ̃l(xi, yi) = −1

n
1� log

˜̂l

= − 1

n
1� log((KXX ◦ KY Y + nλI)−1(KXX1 ◦ KY Y 1))

•Although the proposed method requires inverting an n × n matrix, the computa-
tional load can be reduced by exploiting the fact that this matrix often has a fast
decaying eigen structure. Methods such as incomplete Cholesky decomposition can
be used for this purpose [2].

Simulation

•Density estimation:
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Figure 2: Estimation of density ratio with 100 samples where the actual den-
sities are both Gaussian with following parameters (a) μ1 = 1, σ1 = 1, μ2 =
1, σ2 = 1, (b) μ1 = 1, σ1 = 2, μ2 = 1, σ2 = 1 and (c) μ1 = 1, σ2 = 1, μ2 =
1, σ2 = 2

•Test of dependence: Let X ′, Y ′ ∼ N (0, 1) and U ∼ U(0, 2). Define X = UX ′

and Y = UY ′. Then, X and Y are not independent. However, it is difficult to see
from the scatterplot.
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Figure 3: The variables shown in this figure are dependent.

Method || Sample size 100 200 300 400 500

Mutual information estimated by proposed method 72 87 94 98 99

Characteristic function based measure of dependence [1] 19 45 79 87 97

Table 1: The table shows the number of times dependence has been accepted
out of 100 times. The threshold of the test has been determined by a permu-
tation test. The proposed method shows better small sample performance.

Summary

We present a novel way of estimating the ratio of two PDFs and use it to estimate the
dependence between two random variables. The initial results are promising. Further
study of the effects of kernel size and regularization parameter is being undertaken.
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